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Abstract. We study the set of envy-free allocations for economies with indivisible
objects and quasi-linear utility functions. We characterize the minimal amount of
money necessary for its nonemptiness when negative distributions of money are
not allowed. We also find that, when this is precisely the available amount of
money, there is a unique way to combine objects and money such that these
bundles may form an envy-free allocation. Based on this property, we describe
a solution to the envy-free selection problem following a pseudo-egalitarian cri-
terion. This solution coincides with the “Money Rawlsian Solution” proposed by
Alkan et al. (1991).

1. Introduction

Envy-free allocations, as definied by Foley (1967) are allocations for which every
agent prefers his own bundle to those assigned to other agents. It is well known that
they do not always exist when there are indivisible goods to be allocated among the
agents. In order to guarantee the existence of envy-free allocations for these
economies, there has to exist an infinitely divisible good (that we may think of as
money) to compensate agents when the distribution of the indivisible ones gener-
ates envy among them.

The availability of the infinitely divisible good (money) guarantees the existence
of envy-free allocations if we do not have any restriction on the distribution of
money (Alkan et al. 1991). Sometimes, we may want the money allocations to be
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nonnegative, since the allocation of negative quantities of money requires addi-
tional assumptions on the original wealth of the agents. In this case, envy-free
allocations only exist when the quantity of money available in the economy is large
enough (Alkan et al. 1991; Maskin 1987).

The economies we deal with are defined by a set of objects, a quantity of money
and a set of agents with preferences defined on objects and money. Each agent
receives one and only one object and an amount of money in addition to the wealth
they may already have. A typical example is the allocation of jobs and money
compensations, where money comes from taxes paid by the agents. In this case we
may have special interest in solutions that choose allocations using the minimal
possible amount of money. We address here the problem of deciding in which way
the goods and the money should be allocated among the agents if all agents are
supposed to have the same property rights over the objects and the money (see
Moulin 1993). First we are interested in allocations that do not generate any envy,
but for these economies the set of envy-free allocations may be quite large. Thus we
are faced with a selection problem. Since a solution to this problem that chooses
many different allocations is not very useful, the goal of this paper is to find
a solution that gives a precise recommendation of how to allocate objects (indivis-
ible goods) in a way that is envy-free.

In this paper, we analyze the structure of the set of envy-free allocations.
The existence of envy-free allocations with indivisible goods, quasi-linear prefer-
ences and no restrictions on the sign of the distribution of money can be proved
from linear programming duality or by a direct combinatorial argument (see
Alkan et al. 1991). Here, we present a constructive proof that reveals the special
structure of the set of envy-free allocations and will also suggest a natural
solution to the selection problem. We characterize the minimal amount of
money that guarantees the existence of envy-free allocations with nonnegative
distribution of money. We use this result to define a solution to the envy-free
selection problem.

This problem has been addressed by Alkan et al. (1991), and Tadenuma and
Thomson (1991a, b) who proposed solutions based on intuitive considerations of
fairness. We approach the selection problem by applying a pseudo-egalitarian
criterion and the resulting solution coincides with the money Rawlsian solution
proposed by Alkan et al. (1991), and is based on a different principle (the maximin
principle). First, we construct an envy-free allocation that allocates nonnegative
quantities of money to the agents and uses the minimal amount of money. We find
that this allocation is “almost unique” in two ways: first, there is only one way of
combining objects and money to have envy-freeness; second, all agents are indiffer-
ent among all envy-free allocations (Tadenuma and Thomson (1993) refer to this
property as “single-valuedness up to indifferent permutations”). When there is
more than one envy-free allocation, the same bundles are given to different agents.
This implies that when we have just enough money to guarantee the existence of
envy-free allocations the envy-free solution gives as precise a recommendation to
the allocation problem as one could hope for (obviously, ties can always be broken
arbitrarily or randomly). When money is given exogenously and exceeds the
amount needed to solve the envy-free problem, we allocate it equally and we retain
the egalitarian and envy-free properties as well as the uniqueness of the utility
profile. We describe a procedure to calculate the set of allocations selected by our
solution. The computation of these allocations can be done by an algorithm of
a polynomial time complexity. The technique used in the construction of the
envy-free allocation and in the characterization of the minimal amount of money is




The money rawlsian solution 269

similar to the one used in Quinzii (1984) to find the prices of a competitive
equilibrium for an exchange economy.

The rest of the paper is organized as follows. Section 2 describes the model.
Section 3 studies the set of envy-free allocations with and without restrictions on
the distribution of money. Finally, Section 4 describes how to construct the
solution to the selection problem.

2. The model

An economy is represented by an ordered pair e = (F, M), where M is a real
number representing the amount of an infinitely divisible good, which we
call money. F describes the fundamentals of economy e and is given by an
ordered triple F = (Q, 4, up), where Q = {1,2,..., n} is a finite set of agents,
A= {0y, a,...,0,} is a finite set of objects. Each agent ieQ is endowed
with a preference relation defined on the product of A4 and the real line,
which is assumed to admit a numerical representation by a quasi-linear utility
function:

Ui(oy, x) = u;(or) + x.

This function is interpreted as the utility that agent ie Q derives when he
receives an object o€ A and an amount of money x € R. The symbol u, in the
economy description, stands for a list of n nonnegative vectors, one for each
agent ie Q.

Ug = {[ui(al)’ ui(“Z)’ SN ui(an)]} lEQ

We will denote by & the class of such economies. Given an economy
e = (F, M)ee, an allocation is a pair z = (o, m), where ¢ is a bijection, 6:Q — 4,
assigning to each agent ie Q an element a; € A, and where m = {my, my, ..., m,} is
a vector in R" and m; is to be thought of as the amount of money agent i receives.
We say that an allocation z = (o, m) is feasible when the total amount of money is
distributed among the agents, i.e.:

Z m; = M.
i=1

Z(e) will denote the set of feasible allocations for the economy eee.

In some cases it may be of little interest to consider allocations in which agents
receive negative quantities of money, unless we make additional assumptions
(e.g., the agents hold positive quantities of money). Therefore, we also study the
case in which agents can only recieve nonnegative quantities of money. Obviously,
only economies with a nonnegative total quantity of money M are of interest in this
case. The sub-class of & containing these economies will be called e, ie.,
e+ ={e=(F,M)ee|M > 0}.

Correspondingly, we define a modified concept of feasibility: an allocation
z = (o, m)e Z(e) where e = (F, M )€¢., is called feasible with nonnegative transfers
if it is feasible and m > 0. Z . (e) will denote the set of feasible allocations with
nonnegative transfers for the economy eee¢. . Naturally, for each economy e€e.,
Z.(e) s Z(e).
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3. Envy-free allocations

In order to analyze the set of envy-free allocations for our economies we give
a characterization for Pareto efficient allocations and we use the already known
results of existence and efficiency of envy-free allocations for our economies. The
proof of existence of envy-free allocations with nonnegative distributions of money
for our economies reveals the special structure of the set E(e), and will also suggest
a natural solution to the selection problem. See Svensson (1983) and Alkan et al.
(1991) for general proofs.

Definition (Foley 1967). An allocation z = (6, m)e Z(e), where e = (F, M )ee, is
called envy-free if

ui(o()) + m; = ui(o(j)) + m; foralli,jeQ.

E(e) will denote the set of envy-free allocations for the economy eee.
Given eee¢, define an optimal assignment of objects for e as a bijection 6:Q — 4
such that:

u;(e(i)) = Y. wi(o’(i)) for every bijection a':Q — A.

1 i=1

M=

I

Define P*(e) = {z = (s, m)e Z(e)| o is an optimal assignment of objects for e}.
Since for each economy e = (F, M)eg, there is a finite number (n!) of assign-
ments of objects among agents, there will always exist at least one satisfying the
condition above. Therefore, the set P*(e) is never empty. And this property
characterizes the set of Pareto efficient allocations for the class of economies we are
interested in. P(e) will denote the set of Pareto efficient allocations for ece. The
proofs of the following results are not included but they can be easily checked.

Proposition 1. For all ec¢, P*(e) = P(e) and E(e) < P(e) = P*(e).

The proof of this result for a general class of preferences can be found in
Svensson (1983). When we restrict our attention to the set of feasible allocations
with nonnegative transfers, we still have existence for allocations with optimal
assignments of objects but this property no longer characterizes the Pareto efficient
allocations. The sets of Pareto optimal and Envy-free allocations, and allocations
with optimal assignments of objects with respect to Z .. (e) are denoted respectively
by P, (e), E+(e), and P*(e). In this case we have the following result.

Proposition 2. For all ecc., P%(e) = P.(e) and E . (e) = P*% (e).

Hence, only optimal assignments of objects can generate envy-free allocations.
To show the existence of envy-free allocations we need some additional notation:
Let k7 denote the extent to which agent i envies agent j given the distribution of
objects among agents g, i.e.,

ki = wi(a () — wi(a(3))-

(Note that this expression may, of course, be negative.)

Given F = (Q, A,up) and a distribution of objects ¢:Q — A4, we construct
a weighted graph G, = (Q, Q?), where every agent is represented by a node and
every two agents are connected by an arc. We define the weight of arc (i, j) to be kj.
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The total weight of a directed path (r, T) = [r(1), ..., r(T)], with r(t) e Q for each
t=1,..., T, is given by

1

T_
wr, T)= Z kg(l)r(t+1)
t=1
A cycle is a directed path (r, T) with r(1) =r(T). A path with T = 1 is called a
loop.

Lemma 1. An assignment of objects o is optimal if and only if every cycle in G, has
a nonpositive total weight.

Proof. We know that ¢ is an optimal assignment of objects if and only if:

n
ki1 0@y < 0 for every bijection 6':Q — 4.
i=1

=

Given o’, we can define a set of orbits of ¢~ *(¢’) in the graph G,. Hence, o is an
optimal assignment of objects if and only if the sum of the total weights of these
cycles is nonpositive. We want to prove that this is true if and only if the weight
of every cycle in the graph is nonpositive. However, the “if” is immediate and
the “only if” is simple: Suppose one of this cycles has positive total weight, i.e., for
some i€ Q

Ti=11
Y, kfwre+1y>0, wherer(l)=r(T)=1i.
t=1
Supplementing r by (n— T') trivial cycles {(i, i) }igr( i)j=1 yields a contradic-
tion. Hence & is an optimal assignment of objects if and only if all cycles are
nonpositive. [

Lemma 2. If o is an optimal assignment of objects, then for each i€

=

T-1
max{ klwra+1y St.r(l)=iand (r,T) is any path in Ga}
1

has a finite and nonnegative solution.

Proof. First, we show that for every path (r, T) there is another path (', T') with
T’ < n such that w(r’, T') > w(r, T). If T > n then (r, T) must contain a non-
trivial cycle, because the graph has only n nodes. For each cycle there exist t* and
+** such that t* < t** < T and r(t*) = r(t**). Therefore, the total weight of (r, T')
can be decomposed as follows:

1 -1 n=d
klyre+1y) + Z kfora+1y + Z ki wyre+1y-

=1 t= =%

T4 )

wr, T)= Z k:(t)r(r+1) =
L=, t

Since [r(t*), r(t* + 1),..., r*(t**)] is a cycle, optimality implies that its total
weight must be non positive. Then
e 1

T3 e
w(r, T)= Z kfgyra+1) < Z klgre+n + Z kfwyre+1)-
=1 =1

t=1
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Following this reasoning for all cycles, we shall find a path (', T') with T' < n
contained in the original path (r, T'). Therefore for each ie Q there is a path (r;, T';)
with T; < n, which satisfies:

Tl
w(r, T;) = max{ Z kigre+1y st.r(l)=iand (r, T)is any path in G,}
=1

T-1

= max{ Z kiwra+1) St.r(l)=iand(r, T)is any path in G, with T < n}.

t=1

Since the solution for the right hand side problem exists and is finite, we also

have a finite solution to our problem. This solution must be nonnegative, since
loops (r, T'), with w(r, T') = 0, are also in the feasible set. [J

To prove the existence of envy-free allocations we start by showing that, given
the fundamentals of an economy, for every optimal assignment of objects we can
find a nonnegative distribution of money such that they form an envy-free alloca-
tion for the economy defined by these fundamentals and the amount of money
given by the total amount distributed.

Theorem 1. Let F = (Q, A4, ug), and o:Q — A be an optimal assignment of objects for
F. Define:

Py

mi = max{ Y. klgre+1y St.r(l)=iand(r, T)is any path in G,},
t=1

m*(a) = (m;k(a))ieQa

M*(0) = Y, m{ (o).

i=1
Then, (o, m*(0))€ E . (F, M *(0)).
Proof. Given F = (Q, A4, up), fix an optimal assignment of objects 6:Q — 4 and
consider an allocation z = (¢, m*(g)), where for each ie Q

T=1
m¥ (o) = w(ri, T;) = max{ Y kiwra+ny st.r(l)=iand (r, T)
t=1

is any path in G,}.

By Lemma 2 we know that this maximization problem has a finite and
nonnegative solution. The argument below shows that z = (g, m*(c)) is an envy-
free allocation for the economy e = (F, M*(s)). By Lemma 2 we know that
m¥ (o) = 0 for all ie Q. Suppose we had

Ti—1 T;—1

mi(©0) —mi (@)= Y Kone+rn— 2 Kionern <ki

t=1 t=1

This inequality implies that there is a path [i, 7;(1), ..., r(T';)] starting at i with
a higher total weight than (r;, T;), which is a contradiction. This yields:
Fis—1 ¥ g |
m?‘(a) = m}k("') = Z Ktovaiendy = 2 kfj(z)r,(w y = ki forall i
t=1 t=1

Whence z = (o, m*(d))e E(F, M*(0)). O
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The existence of envy-free allocations with nonnegative transfers can only be
guaranteed when the total quantity of money in the economy is large enough.
Maskin (1981) and Alkan (1991) give sufficient conditions on the total quantity for
a more general class of economies. For our particular model we have a necessary
and sufficient condition on the total quantity of money for envy-free allocations
with nonnegative transfers to exist. This result is stated in Theorem 2 and it follows
directly from the next two lemmata.

Lemma 3. Let F = (Q, 4, up), and :Q — A be an optimal assignment of objects for
F.Letm = (my, ..., m,) e R". If (0, m)e E(F, ¥~ m;) and for some i€ Q, m; < m{ (o),
then for some je Q, m; < 0.

Proof. Suppose (o, m)e E(F,¥i-1 m;) and m; < m () for some i€ Q. Since (o, m) is
envy-free, m, — m; > kj; must hold for all h, je Q. This implies:

Ti=1
*
mi<mf= Y Kimre+1) < M) — M) + M) — M)
t=1

+ o A M- 1) — M
=My — Mgy = Mi — Myy(1y)
which, in turn, implies that m, ) <0. O

Lemma 3 shows that given an optimal assignment of objects the amount of
money found by the construction of the allocation in Theorem 1 is minimal for the
existence of envy-free allocations with nonnegative distribution of money, and that
given the same optimal assignment of objects and this amount of money the
envy-free allocation is unique.

Corollary. Let F = (Q, A4, up), and 6:Q — A be an optimal assignment of objects
for F.

() If M < M*(q), then there is no (o, m)e Z . (F, M) such that (g, m) is envy-free.
(ii) There is no me R" such that m # m* (o) and (o, m)€ E .. (F, M *(0)).

Lemma 4 shows that when there are several optimal assignments of objects, we can
use the same distribution of money to construct the envy-free allocations with

nonnegative transfers.

Lemma 4. Let F = (Q, A, up), and 0:Q — A be two optimal assignments of objects
for F. Define m' € R" as m; = m*(0),-1 (o iy for all i€ Q. Then, (¢, m')eE. (F, M*(0)).

Proof. Suppose (¢, m’) is not envy-free. Then, there eixst i, he Q such that
ui(a’ (i) + mi < u(a’'(h)) + mj,.
Denoting j = ¢~ !(¢’(h)) and by definition of z’
(0" (i) + mj = ui(0’ (i) + My-1 0y < Ui(0())) + m; = u;(0’ () + mj.
Rearranging terms and using the definition of kf; we have
Mg-s oy — My < wi(0(f)) — uil’ () = ui(a(j)) — ui(a(®))
+ (0 (i) — w0’ (i) = kij — kiz=1 @ @p)-
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Because both ¢ and ¢’ are optimal assignments Y- kjiy-1(o'ny) = 0, and we can
write

n
a a a
ki = kig-s iy =kij+ Y Kiomr -
h=1;h#i

Since z = (o, m) is envy-free we have

n n
kGi+ Y Kerean <kG+ Y M= Moyl
h=1h+#i h=1h#1i

= ki; + M*(0) — m; — M*(0) + My-1(o y)
= kij — mi + Mo-1 (0 )

We have Me-1(gr )y — Mj < klo_, — m; + My-1(6(i)) which lmplles that m;—m; < k:,
and contradicts the fact that (o,m) is envy-free. Therefore, we have that
(¢',m)eE.(F,M*(0)) O

From Lemma 4 we obtain the minimal amount of money for the existence of
envy-free allocations with nonnegative distributions of money and we can show
that when this is the amount of money available all agents are indifferent among all
envy-free allocations.

Corollary. Let F = (Q, A, up), and 6:Q — A and ¢':Q — A be two optimal assign-
ments of objects for F.

(i) M*(o) = M*(a").
(ii) For all e A, m*(0')g-1(2y = M*(0)5-1 (-
(iii) For all i€ Q, ui(o(i)) + m*(0); = ui(a’ (i) + m*(a’);.

Proof. To prove part (i) we already have that M*(g) > M*(s"). Following the same
reasoning for ¢’ we have M*(a) < M*(o’), hence M*(0) = M*(d’). Part (ii) follows
from part (i). If (o, m) is an envy-free allocation which uses the smallest amount of
money, for each ie Q we must have that u;((i)) + m; = max;eo{u;(a(j)) + m;}. By
the same reason u;(a’(i)) + m; = max;.o {ui(¢'(j)) + Me-1¢(jy }, and by construc-
tion of (o', m’) these quantities are the same. This proves part (iii).

Notice that if the money vector were indexed on the objects, instead of on the
individuals, there would exist a unique envy-free allocation with nonnegative
distribution of money when the amount of money available is minimal. Now we

can state the main result.
Given F = (Q, A4, up), define M¥ = M*(o) for all optimal assignments o for F.

Theorem 2. For all F = (Q, A, ug), E.(F,M) # 0 if and only if M > M}.

Proof. The “if” part follows directly from Theorem 1. The “only if” part follows
from Corollary of Lemma 3 once we known that M *(¢) = M ¥ from Lemma 4. [

4. A solution to the envy-free selection problem

Now we want to define a solution to the envy-free selection problem based on the
structure of the set of envy-free allocations studied in the last section.

Definition. A solution is defined as a correspondence @ which assigns to each
economy e€é¢ a non-empty subset @(e) of Z(e).
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We would like a solution to give precise recommendations regarding the
distribution of objects and money among the agents. We have seen that in general
there are a large number of envy-free allocations. We propose a solution which may
be applied to all economies in our class, and will always choose a unique allocation.
This solution is defined as follows:

®*(F, M) = {(5,m)e E(F, M): m; = m} + (M — M})/n
and (o, m*)e E(F, M¥)}.

It allocates the money as follows: given any optimal assignment of objects each
agent will receive the unique amount of money indicated by the envy-free alloca-
tion for (F, M¥) plus an equal share of the amount of money left over, ie. it
allocates the minimal amount of money to generate an envy-free allocation and
when there is no more envy applies only the egalitarian criterion to allocate the rest
of the money, and the final allocations are still envy-free.

Using Theorems 1 and 2 it is easy to check that this solution chooses at least
one allocation for each economy and is single valued up to permutations which
leave all agents indifferent. It can be shown that this solution coincides with “the
money Rawlsian solution” proposed by Alkan et al. (1991) based on the maximin
principle. The next proposition provides an algorithm to compute an allocation
selected by this solution and shows that it is of polynomial time complexity.

Proposition 3. There exists an algorithm, whose time complexity is polynomial, that
computes an element of ®* and the utility profile corresponding to ®* for any given
economy. (With rational data.)

Proof. Given e = (F, M) consider the following procedure to construct an element
of the set @*(F, M).

First step. Find the optimal assignments of objects. Given F = (Q, 4, ug), let
Gr = (QUA, Q x A) be a directed bipartite graph, where every agent and every
object are represented by a node (QUA is the set of nodes) and each agent is
connected to each object by an arc (Q x 4 = {(i, o;): i€ Q and o;€ A} is the set of
arcs). We define the weight of an arc (i, &;) to be ;(a;). Then the problem of finding
an optimal assignment of objects can be thought of as a weighted matching

problem:
“Given an arc-weighted bipartite graph, find a matching for which the sum of

the arcs is maximum.”
This can be done in O(n3) steps. (See, for instance, Lawler (1976, p. 201-207.)

Second step. Find M*. Following the proof of Theorem 1 M* = 37i-, m}, therefore
we have to find, for each i€ Q:

T=ad
mf = max{ Y Kwra+1y str(l)=iand(r, T)is any path in Ga}
t=1

for any optimal assignment of objects ¢. This problem can be written as (n — 1)
different “shortest paths problems”:

=
mf = manEQ{ — min Z = k:"(t)r(t-*‘ 1) s.t. r(l) =1, (r, T)EGG and r(T) =]}

=1
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By lemma 1 we know that if o is an optimal assignment of objects the graph G, has
no cycles with positive weight. Given this condition a solution can be found in
O(n®) operations. (See Lawler 1976, pp 82-89.) Once we have all the shortest paths
between all pairs of nodes, we have to select, for each i € Q, the shortest path from i,
which requires O(n?) steps.

Third step. Compute an allocation in ¢*(F, M). Given ¢, compute m{ = m +
(M — M*)/n to obtain z = (o, m{)e ®*(F, M). This can obviously be done in
linear time.

Finally note that the time complexity of the algorithm is O(n?): step 1 requires
O(n®) operations, step 2 requires O(n®) as well, while step 3 is of linear time
complexity. O
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